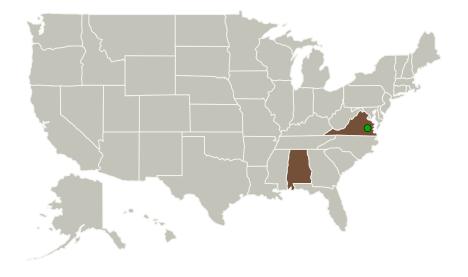
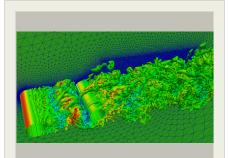
High Fidelity Tool for Noise Source Identification, Phase I




Completed Technology Project (2017 - 2017)

Project Introduction

Thorough understanding of airframe and propulsion aerodynamic noise sources and the subsequent acoustic propagation to the farfield is necessary to the design and development of efficient, environmentally acceptable aircraft. In this SBIR study, we propose to develop a high fidelity tool using high-order low-dissipation methods in the NASA flagship unstructured CFD code FUN3D. The developed prediction tool can accurately represent the nonlinear flow processes with minimum dissipation, including turbulence, coherent vortices and shock waves critical to the noise generation. Compared to the state-of-the-art unstructured production codes, an increase of one order-of-magnitude in resolvable scales is expected at the expense of just 10% overhead. In Phase I, the effort will include improvement of the 3rdorder scheme for high-aspect ratio unstructured grids, and consistent temporal and spatial accuracies. High-order limiters will be developed to improve the shock capturing capability for sonic boom. The performance improvements will be assessed for the unsteady subsonic and supersonic flows. The Phase II effort will further mature and advance the technology utilizing FUN3D?s massively parallel infrastructure to enable its applications for the prediction of airframe noise sources and the noise sources due to the aerodynamic and acoustic interaction of airframe and engines.

Primary U.S. Work Locations and Key Partners

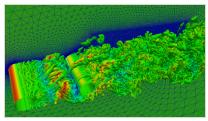
High Fidelity Tool for Noise Source Identification, Phase I Briefing Chart Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

High Fidelity Tool for Noise Source Identification, Phase I



Completed Technology Project (2017 - 2017)

Organizations Performing Work	Role	Туре	Location
CFD Research	Lead	Industry	Huntsville,
Corporation	Organization		Alabama
Langley Research	Supporting	NASA	Hampton,
Center(LaRC)	Organization	Center	Virginia

Primary U.S. Work Locations		
Alabama	Virginia	

Images

Briefing Chart Image High Fidelity Tool for Noise Source Identification, Phase I Briefing Chart Image (https://techport.nasa.gov/imag e/125811)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

CFD Research Corporation

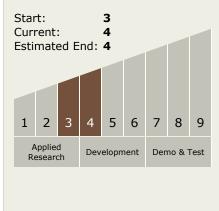
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

H Q Yang

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

High Fidelity Tool for Noise Source Identification, Phase I

Completed Technology Project (2017 - 2017)

Technology Areas

Primary:

TX15 Flight Vehicle Systems
 □ TX15.1 Aerosciences
 □ TX15.1.4 Aeroacoustics

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

